Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Chinese Journal of Cancer ; (12): 153-162, 2011.
Article in English | WPRIM | ID: wpr-296301

ABSTRACT

The increasing incidence and mortality associated with advanced stages of melanoma are cause for concern. Few treatment options are available for advanced melanoma and the 5-year survival rate is less than 15%. Targeted therapies may revolutionize melanoma treatment by providing less toxic and more effective strategies. However, maximizing effectiveness requires further understanding of the molecular alterations that drive tumor formation, progression, and maintenance, as well as elucidating the mechanisms of resistance. Several different genetic alterations identified in human melanoma have been recapitulated in mice. This review outlines recent progress made in the development of mouse models of melanoma and summarizes what these findings reveal about the human disease. We begin with a discussion of traditional models and conclude with the recently developed RCAS/TVA somatic cell gene delivery mouse model of melanoma.


Subject(s)
Animals , Humans , Mice , 9,10-Dimethyl-1,2-benzanthracene , Avian Leukosis Virus , Genetics , Avian Proteins , Genetics , Metabolism , Cell Line, Tumor , Disease Models, Animal , Gene Transfer Techniques , Genetic Vectors , Genetics , Melanocytes , Metabolism , Melanoma , Genetics , Pathology , Melanoma, Experimental , Genetics , Mice, Transgenic , Neoplasm Transplantation , Receptors, Virus , Genetics , Metabolism , Skin Neoplasms , Genetics , Pathology , Tetradecanoylphorbol Acetate , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL